New Directions in Privacy-preserving Machine Learning

Kamalika Chaudhuri

University of California, San Diego
Sensitive Data

- Medical Records
- Genetic Data
- Search Logs
AOL Violates Privacy
AOL Violates Privacy

A Face Is Exposed for AOL Searcher No. 4417749

By MICHAEL BARBARO and TOM ZELLER Jr.
Published: August 9, 2006

Buried in a list of 20 million Web search queries collected by AOL and recently released on the Internet is user No. 4417749. The number was assigned by the company to protect the searcher’s anonymity, but it was not much of a shield.

No. 4417749 conducted hundreds of searches over a three-month period on topics ranging from “numb fingers” to “60 single men” to “dog that urinates on...
2-8 movie-ratings and dates for Alice reveals:

Whether Alice is in the dataset or not

Alice’s other movie ratings
High-dimensional Data is Unique

Example: UCSD Employee Salary Table

<table>
<thead>
<tr>
<th>Position</th>
<th>Gender</th>
<th>Department</th>
<th>Ethnicity</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faculty</td>
<td>Female</td>
<td>CSE</td>
<td>SE Asian</td>
<td>-</td>
</tr>
</tbody>
</table>

One employee (Kamalika) fits description!
Simply anonymizing data is **unsafe**!
Disease Association Studies [WLWTZ09]

Correlation (R² values), Alice’s DNA reveals:
If Alice is in the **Cancer** set or **Healthy** set

<table>
<thead>
<tr>
<th>Cancer</th>
<th>Healthy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>190 1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>216 251 1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>186 .117 .047 1.00</td>
<td>.00</td>
</tr>
<tr>
<td>154 .011 .170 .683 1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>190 .140 .102 .065 .130 1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>270 .215 .284 .248 .140 .141 1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>101 .005 .170 .059 .234 .099 .175 1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>239 .071 .163 .111 .161 .083 .109 .157 1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>471 .117 .243 .094 .144 .123 .203 .216 .274 1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>179 .202 .132 .634 .067 .159 .207 .106 .092 .204 1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>.141 1.00</td>
<td>.00</td>
</tr>
<tr>
<td>.299 .175 1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>.080 .189 .157 1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>.123 .283 .216 .274 1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>.159 .207 .103 .092 .254 1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>.088 .152 .075 .183 .158 .220 1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>.046 .161 .082 .072 .157 .143 .147 1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>.270 .302 .122 .233 .190 .172 .145 .177 1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>.245 .156 .136 .139 .110 .048 .126 .104 .169 1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>.178 .135 .102 .258 .314 .165 .147 .158 .131 .074 1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>
Simply anonymizing data is unsafe!
Statistics on small data sets is unsafe!

![Diagram showing relationships between Privacy, Data Size, and Accuracy]
Correlated Data

User information in social networks

Physical Activity Monitoring
Why is Privacy Hard for Correlated Data?

Neighbor’s information leaks information on user
Talk Agenda:

How do we learn from sensitive data while still preserving privacy?

New Directions:

1. Privacy-preserving Bayesian Learning
2. Privacy-preserving statistics on correlated data
Talk Agenda:

1. Privacy for Uncorrelated Data
 - How to define privacy
Differential Privacy [DMNS06]

Participation of a single person does not change output
Differential Privacy: Attacker’s View

Prior Knowledge + Algorithm Output on Data & = Conclusion on
For all D_1, D_2 that differ in one person’s value, any set S, if $A = \epsilon$-private randomized algorithm, then:

$$\Pr(A(D_1) \in S) \leq e^\epsilon \Pr(A(D_2) \in S)$$
Differential Privacy

1. Provably strong notion of privacy

2. Good approximations for many functions
 e.g, means, histograms, etc.
Interpretation: Attacker’s Hypothesis Test [WZ10, OV13]

H0: Input to the algorithm = Data +

H1: Input to the algorithm = Data +

Failure Events:
False Alarm (FA), Missed Detection (MD)
Interpretation: Attacker’s Hypothesis Test [WZ10, OV13]

If algorithm is ϵ-DP

$$\Pr(FA) + \epsilon^\epsilon \Pr(MD) \geq 1$$

$$\epsilon^\epsilon \Pr(FA) + \Pr(MD) \geq 1$$

FA = False Alarm
MD = Missed Detection
Talk Agenda:

1. Privacy for Uncorrelated Data
 - How to define privacy
 - Privacy-preserving Learning
Example 1: Flu Test

Could I have H1N1 flu (swine flu)?

Use the Flu Self-Assessment, based on material from Emory University, to:

- Learn whether you have the symptoms of H1N1 flu (swine flu)
- Help you decide what to do next

Take Flu Self-Assessment

Learn more about H1N1 flu

- What is H1N1 (Swine) Flu?
- Basics for Flu Prevention
- Guidelines for Taking Care of Yourself and Others
- People with Health Conditions

Predicts flu or not, based on patient symptoms
Trained on sensitive patient data
Example 2: Clustering Abortion Data

Given data on abortion locations, cluster by location while preserving privacy of individuals
Bayesian Learning
Bayesian Learning

Data $X = \{ x_1, x_2, \ldots \}$
Model Class Θ

Related through likelihood $p(x|\theta)$
Bayesian Learning

Data $X = \{x_1, x_2, \ldots\}$
Model Class Θ

Related through likelihood $p(x|\theta)$

Prior $\pi(\theta)$

$+$
Bayesian Learning

Data $X = \{ x_1, x_2, \ldots \}$
Model Class Θ

Related through
likelihood $p(x|\theta)$

Prior $\pi(\theta) +$ Data X
Bayesian Learning

Data $X = \{ x_1, x_2, \ldots \}$

Model Class Θ

Prior $\pi(\theta)$

Data X

Related through likelihood $p(x|\theta)$

$+$

Posterior $p(\theta|X)$
Bayesian Learning

Data $X = \{ x_1, x_2, \ldots \}$
Model Class Θ

Related through
likelihood $p(x|\theta)$

Goal: Output posterior (approx. or samples)
Example: Coin tosses

\[X = \{ \text{H, T, H, H...} \} \]
\[\Theta = [0, 1] \]

likelihood:
\[p(x|\theta) = \theta^x (1 - \theta)^{1-x} \]
Example: Coin tosses

\[X = \{ H, T, H, H... \} \]
\[\Theta = [0, 1] \]

likelihood:
\[p(x|\theta) = \theta^x (1 - \theta)^{1-x} \]

Prior
\[\pi(\theta) = 1 \]
Example: Coin tosses

$X = \{ H, T, H, H... \}$

$p(x | \theta) = \theta^x (1 - \theta)^{1-x}$

$\Theta = [0, 1]$
Example: Coin tosses

\[X = \{ H, T, H, H \ldots \} \]
\[\Theta = [0, 1] \]

likelihood:
\[
p(x|\theta) = \theta^x (1 - \theta)^{1-x}
\]

Prior
\[\pi(\theta) = 1 \]

Data X
\[(h \ H, \ t \ T) \]

Posterior
\[p(\theta|x) \propto \theta^h (1 - \theta)^t \]
Example: Coin tosses

\[X = \{ \text{H, T, H, H...} \} \]
\[\Theta = [0, 1] \]

likelihood:
\[p(x|\theta) = \theta^x (1 - \theta)^{1-x} \]

Prior
\[\pi(\theta) = 1 \]

Data \(X \)
\[(h \ H, \ t \ T) \]

Posterior
\[p(\theta|x) \propto \theta^h (1 - \theta)^t \]

In general, \(\theta \) is more complex (classifiers, etc)
Private Bayesian Learning

Data $X = \{ x_1, x_2, \ldots \}$

Model Class Θ

Related through likelihood $p(x|\theta)$

Prior $\pi(\theta)$

Data X

Posterior $p(\theta|X)$
Private Bayesian Learning

Data $X = \{ x_1, x_2, \ldots \}$

Model Class Θ

\[
\pi(\theta) + p(x|\theta) = p(\theta|X)
\]

Goal: Output private approx. to posterior
How to make posterior private?

Option 1: Direct posterior sampling [Detal14]
Not private unless under restrictive conditions

$p(\theta|D)$ $p(\theta|D')$
How to make posterior private?

Option 2: Sample from truncated posterior at high temperature [WFS15]

Disadvantage:
Intractable - technically privacy only on convergence
Needs more data/subjects
Our Work: Exponential Families

Exponential family distributions:

\[p(x|\theta) = h(x)e^{\theta^\top T(x) - A(\theta)} \]

where \(T \) is a sufficient statistic

Includes many common distributions like Gaussians, Binomials, Dirichlets, Betas, etc
Properties of Exponential Families

Exponential families have conjugate priors

\[p(\theta | x) \text{ is in the same distribution class as } \pi(\theta) \]

eg, Gaussians-Gaussians, Beta-Binomial, etc
Sampling from Exponential Families

(Non-private) posterior comes from exp. family:

\[p(\theta|x) \propto e^{\eta(\theta)^\top (\sum_i T(x_i)) - B(\theta)} \]

given data \(x_1, x_2, \ldots \)

Private Sampling:

1. If T is bounded, add noise to \(\sum_i T(x_i) \) to get private version \(T' \)

2. Sample from the perturbed posterior:

\[p(\theta|x) \propto e^{\eta(\theta)^\top T' - B(\theta)} \]
Performance

• Theoretical Guarantees
• Experiments
Theoretical Guarantees

Performance Measure: Asymptotic Relative Efficiency
(Lower = more sample efficient for large n)

Non-private: 2
Our Method: 2
[WFS15]: \(\max(2, 1 + 1/\epsilon) \)
Experiments - Task

Task: Time series clustering of events in Wikileaks war logs while preserving event-level privacy

Data: War-log entries - Afghanistan (75K), Iraq (390K)

Goal: Cluster entries in each region based on features (casualty counts, enemy/friendly fire, explosive hazards, etc...)
Experiments - Model

Hidden Markov Model for each region

Discrete states \((h_t) \) and observations \((x_t) \)

Transition parameters \(T \): \(T_{ij} = P(h_{t+1} = i \mid h_t = j) \)

Emission parameters \(O \): where \(O_{ij} = P(x_t = i \mid h_t = j) \)

Goal: Sample from posterior \(P(O \mid \text{data}) \)
(in the exponential family)
Experiments - Results

Afghanistan

Iraq
Experiments - States

Iraq
State 1

Iraq
State 2
Experiments - Clustering

Region code
MND-BAGHDAD
MND-C
MND-N
MND-SE
MNF-W
State 1
State 2
Conclusion

New method for private posterior sampling from exponential families

Open Problems:

1. Private sampling from more complex posteriors

2. Private versions of other Bayesian posterior approximation schemes (variational Bayes, etc)

3. Combining Bayesian inference with more relaxed forms of DP (eg, concentrated DP, distributional DP, etc)
Talk Agenda:

1. Privacy for Uncorrelated Data
 - How to define privacy
 - Privacy-preserving Bayesian Learning

2. Privacy for Correlated Data
Example 1: Activity Monitoring

Share aggregate data on physical activity with doctor or provider, while hiding activity at each specific time
Example 2: Spread of Flu in Network

Publish aggregate statistics, preserve individual privacy
Why is Differential Privacy not enough for Correlated data?
Example: Activity Monitoring

\[D = (x_1, \ldots, x_T), \quad x_t = \text{activity at time } t \]

Goal: (1) Publish activity histogram
(2) Prevent adversary from knowing activity at time \(t \)
Example: Activity Monitoring

\[D = (x_1, \ldots, x_T), \quad x_t = \text{activity at time } t \]

I-DP: Output histogram of activities + noise with stdev 1
Example: Activity Monitoring

\[D = (x_1, .., x_T), \quad x_t = \text{activity at time } t \]

I-DP: Output histogram of activities + noise with stdev 1

Not enough - activities across time are highly correlated!
Example: Activity Monitoring

\[D = (x_1, \ldots, x_T), \quad x_t = \text{activity at time } t \]

\[\text{Correlation Network} \]

1-Group DP: Output histogram of activities + noise with stdev \(T \)

Too much noise - no utility!
Talk Agenda:

1. Privacy for Uncorrelated Data
 - How to define privacy
 - Privacy-preserving Classification

2. Privacy for Correlated Data
 - How to define privacy
Secret Set S

S: Information to be protected

e.g.: Alice’s age is 25, Bob has a disease
Pufferfish Privacy [KM12]

Secret Set S

Secret Pairs Set Q

Q: Pairs of secrets we want to be indistinguishable

e.g: (Alice’s age is 25, Alice’s age is 40)

(Bob is in dataset, Bob is not in dataset)
Pufferfish Privacy [KM12]

Secret Set S

Secret Pairs Set Q

Distribution Class \(\Theta \)

\(\Theta \): A set of distributions that plausibly generate the data
e.g: (connection graph G, disease transmits w.p $[0.1, 0.5]$)
(Markov Chain with transition matrix in set P)

May be used to model correlation in data
Pufferfish Privacy [KM12]

An algorithm A is ϵ-Pufferfish private with parameters (S, Q, Θ) if for all (s_i, s_j) in Q, for all $\theta \in \Theta$, $X \sim \theta$, all t,

$$p_{\theta, A}(A(X) = t|s_i, \theta) \leq e^\epsilon \cdot p_{\theta, A}(A(X) = t|s_j, \theta)$$

whenever $P(s_i|\theta), P(s_j|\theta) > 0$
Theorem: Pufferfish = Differential Privacy when:

\[S = \{ s_{i,a} := \text{Person } i \text{ has value } a, \text{ for all } i, \text{ all } a \text{ in domain } X \} \]

\[Q = \{ (s_{i,a}, s_{i,b}), \text{ for all } i \text{ and } (a, b) \text{ pairs in } X \times X \} \]

\[\Theta = \{ \text{Distributions where each person } i \text{ is independent} \} \]
Pufferfish Generalizes DP [KM12]

Theorem: Pufferfish = Differential Privacy when:

- $S = \{ s_{i,a} := \text{Person } i \text{ has value } a, \text{ for all } i, \text{ all } a \text{ in domain } X \}$
- $Q = \{ (s_{i,a} s_{i,b}), \text{ for all } i \text{ and } (a, b) \text{ pairs in } X \times X \}$
- $\Theta = \{ \text{Distributions where each person } i \text{ is independent} \}$

Theorem: No utility possible when:

- $\Theta = \{ \text{All possible distributions} \}$
Talk Agenda:

1. Privacy for Uncorrelated Data
 - How to define privacy
 - Privacy-preserving Classification

2. Privacy for Correlated Data
 - How to define privacy
 - Privacy-preserving Statistics
How to get Pufferfish privacy?

Special case mechanisms [KM12, HMD12]

Is there a more general Pufferfish mechanism for a large class of correlated data?

Our work: Yes, the Markov Quilt Mechanism
Correlation Measure: Bayesian Networks

Joint distribution of variables:

\[\Pr(X_1, X_2, \ldots, X_n) = \prod_i \Pr(X_i | \text{parents}(X_i)) \]
A Simple Example

Model:

\[X_i \text{ in } \{0, 1\} \]

State Transition Probabilities:

\[\begin{array}{c}
\text{0} & \text{1} \\
p & 1 - p & p & 1 - p
\end{array} \]
A Simple Example

Model:
\[X_i \text{ in } \{0, 1\} \]

State Transition Probabilities:
\[\Pr(X_2 = 0| X_1 = 0) = p \]
\[\Pr(X_2 = 0| X_1 = 1) = 1 - p \]

\[\ldots \]
A Simple Example

Model:
X_i in \{0, 1\}

State Transition Probabilities:
\[
\begin{align*}
\Pr(X_2 = 0| X_1 = 0) & = p \\
\Pr(X_2 = 0| X_1 = 1) & = 1 - p \\
\Pr(X_i = 0| X_1 = 0) & = \frac{1}{2} + \frac{1}{2}(2p - 1)^{i-1} \\
\Pr(X_i = 0| X_1 = 1) & = \frac{1}{2} - \frac{1}{2}(2p - 1)^{i-1}
\end{align*}
\]

Influence of X_1 diminishes with distance
Algorithm: Main Idea

Goal: Protect X_1
Goal: Protect X_1

Local nodes (high correlation)

Rest (almost independent)

Algorithm: Main Idea
Algorithm: Main Idea

Goal: Protect X_1

Add noise to hide local nodes + Small correction for rest

Local nodes (high correlation) + Rest (almost independent)
Measuring “Independence”

Max-influence of X_i on a set of nodes X_R:

$$e(X_R|X_i) = \max \sup_{a,b} \max_{\theta \in \Theta} \log \frac{\Pr(X_R = x_R|X_i = a, \theta)}{\Pr(X_R = x_R|X_i = b, \theta)}$$

Low $e(X_R|X_i)$ means X_R is almost independent of X_i

To protect X_i, correction term needed for X_R is $\exp(e(X_R|X_i))$
How to find large “almost independent” sets

Brute force search is expensive

Use structural properties of the Bayesian network
Markov Blanket

\[\text{Markov Blanket}(X_i) = \text{Set of nodes } X_S \text{ s.t. } X_i \text{ is independent of } X \setminus (X_i \cup X_S) \text{ given } X_S \]

(usually, parents, children, other parents of children)
Define: Markov Quilt

X_Q is a Markov Quilt of X_i if:

1. Deleting X_Q breaks the graph into X_N and X_R
2. X_i lies in X_N
3. X_R is independent of X_i given X_Q

(For Markov Blanket $X_N = X_i$)
Recall: Algorithm

Goal: Protect X_1

Add noise to hide local nodes + Small correction for rest

Local nodes (high correlation) Rest (almost independent)
Why do we need Markov Quilts?

Given a Markov Quilt,

\[X_N = \text{local nodes for } X_i \]
\[X_Q \cup X_R = \text{rest} \]
Why do we need Markov Quilts?

Given a Markov Quilt,

- $X_N = \text{local nodes for } X_i$
- $X_Q \cup X_R = \text{rest}$

Need to search over Markov Quilts X_Q to find the one which needs optimal amount of noise
From Markov Quilts to Amount of Noise

Let $X_Q = \text{Markov Quilt for } X_i$

Stdev of noise to protect X_i:

$$\text{Score}(X_Q) = \frac{\text{card}(X_N)}{\epsilon - e(X_Q | X_i)}$$

Correction for $X_Q \cup X_R$
The Markov Quilt Mechanism

For each X_i

Find the Markov Quilt X_Q for X_i with minimum score s_i

Output $F(D) + (\max_i s_i) Z$ where $Z \sim Lap(1)$
The Markov Quilt Mechanism

For each X_i

Find the Markov Quilt X_Q for X_i with minimum score s_i

Output $F(D) + (\max_i s_i) Z$ where $Z \sim \text{Lap}(1)$

Theorem: This preserves ϵ-Pufferfish privacy

Advantage: Poly-time in special cases.
Example: Activity Monitoring

$$D = (x_1, .., x_T), \quad x_t = \text{activity at time } t$$
Example: Activity Monitoring

\[D = (x_1, \ldots, x_T), \quad x_t = \text{activity at time } t \]

(Minimal) Markov Quilts for \(X_i \) have form \{\(X_{i-a}, X_{i+b} \}\)

Efficiently searchable
Example: Activity Monitoring

\mathcal{X} : set of states

P_θ : transition matrix describing each $\theta \in \Theta$
Example: Activity Monitoring

\mathcal{X} : set of states

P_θ : transition matrix describing each $\theta \in \Theta$

Under some assumptions, relevant parameters are:

$$\pi_\Theta = \min_{x \in \mathcal{X}, \theta \in \Theta} \pi_\theta(x)$$ (min prob of x under stationary distr.)

$$g_\Theta = \min_{\theta \in \Theta} \min \{1 - |\lambda| : P_\theta x = \lambda x, \lambda < 1\}$$ (min eigengap of any P_θ)
Example: Activity Monitoring

\(\mathcal{X} : \) set of states
\(P_\theta : \) transition matrix describing each \(\theta \in \Theta \)

Under some assumptions, relevant parameters are:

\[
\pi_\theta = \min_{x \in \mathcal{X}, \theta \in \Theta} \pi_\theta(x) \quad \text{(min prob of x under stationary distr.)}
\]

\[
g_\theta = \min_{\theta \in \Theta} \min \{1 - |\lambda| : P_\theta x = \lambda x, \lambda < 1\} \quad \text{(min eigengap of any } P_\theta)\]

Max-influence of \(X_Q = \{X_{i-a}, X_{i+b}\} \) for \(X_i \)

\[
e(X_Q|X_i) \leq \log \left(\frac{\pi_\theta + \exp(-g_\theta b)}{\pi_\theta - \exp(-g_\theta b)} \right) + 2 \log \left(\frac{\pi_\theta + \exp(-g_\theta a)}{\pi_\theta - \exp(-g_\theta a)} \right)
\]

\[
\text{Score}(X_Q) = \frac{a + b - 1}{e - e(X_Q|X_i)}
\]
Markov Quilt Mechanism for Activity Monitoring

For each X_i

Find Markov Quilt $X_Q = \{X_{i-a}, X_{i+b}\}$ with minimum score s_i

Output $F(D) + (\max_i s_i) Z$ where $Z \sim Lap(1)$

Running Time: $O(T^3)$ (can be made $O(T^2)$)

Advantage: Consistency
Conclusion

New mechanism for computing statistics on correlated data

Open Problems:

1. Composing multiple releases on correlated data
2. Other correlation models (beyond Bayesian nets)
3. More mechanisms (for optimization)
4. Applications - activity recognition, location privacy
Conclusion

Learning with Privacy:

Learning from iid data based on convex opt
Relatively well-understood

New Directions:

Bayesian Inference
Learning from Correlated Data
Acknowledgements

James Foulds Joseph Geumlek Max Welling

Shuang Song Mani Srivastava Yizhen Wang
Questions?